

Predicting the Clinical Outcomes of MRSA Infection

Presenter: Bella Yang (1st year PhD student) Supervisors: Prof. Rita Ng and Prof. Margaret Ip Joint postgraduate seminar 24th November 2023

Outline

- General introduction
 - The context
 - The motivation
 - The pipeline of model development
- Examples
 - Statistical models
 - Machine learning models
- Current challenges
 - Model development
 - Application

Staphylococcus aureus

- *Staphylococcus aureus* is a common bacteria found on skin and in nasal.
- **Infections**: mild to severe
 - Skin and soft tissue infection.
 - Respiratory tract infection.
 - Renal/urinary tract infection.
 - Abdominal infection.
 - Catheter-related infection.
 - Bacteraemia.
 - Bloodstream infection (sepsis).
 - Central nervous system infection.

MecA gene (transmit through mobile genetic elements)

 Modify or overexpress penicillin-binding proteins (PBPs; peptidoglycan transpeptidase on cell wall) - PBP-2a
 *P*Reduce avidity to most of the β-lactams (e.g. oxacillin or cefoxitin).

- Methicillin-resistant *Staphylococcus aureus* (MRSA)
 - Healthcare-associated MRSA (HA-MRSA)
 - Community-associated MRSA (CA-MRSA)
 - Livestock-associated MRSA (LA-MRSA)

The burden of MRSA infection

- The second leading pathogens for deaths associated with resistance.
- In 2019, MRSA caused more than 100,000 deaths attributable to AMR globally.
- The prevalence of MRSA resistance varied across different regions and countries.
 - Highest: north Africa and the middle east countries (> 60%).
 - Lowest: several Europe and sub-Saharan countries (< 5%).

The motivation of developing prediction models for the clinical outcomes

- Early identification of high-risk patients.
 - Early warning systems.
 - Develop or improve risk assessment tools .
- Preventing complications and reducing mortality.
- Optimizing antibiotic prescription.
- Efficient allocation of healthcare resources.

Classical statical modelling: pipeline

Machine learning modelling: pipeline

Example 1: Statistical models

Logistic Regression Analysis for Predicting Methicillin-resistant *Staphylococcus Aureus* (MRSA) In-hospital Mortality (Hai et al, 2011)

MRSA infection in Queen Mary Hospital

- **Objective:** predict the in-hospital mortality.
- **Data source:** clinical management system (2006 2010)
- Method (1,762 patients)
 - Logistic regression model.
 - Variables were selected based on Chi-square test and Welch two sample t-test (p<0.1).
- Results:
 - z = -3.49 + 0.01*age 0.71* Residency + 0.52*Solid tumor +1.03*Hemic malignancy + 0.76*COAD + 0.94*Dementia + 0.52*PLT + 0.55*Lymphocyte + 0.53*Urea + 0.48*ALP
 - (Probability of death) $f(z) = 1/(I + e^{-Z})$

Future study suggested by the authors:

"Possible direction is to make use of other data mining "blackbox" methods, such as k-NN (K-Nearest Neighbours) and SVM (Support vector Machine). These models also need further validation on their performance and feature selection".

Example 2: Statistical models

MRSA blood stream infection in Hong Kong (1,133 patients)

- **Objective:** describe the characteristics of 30-day mortality rate.
- **Data source:** electronic medical records 26 Hong Kong public hospitals
- Method:
 - Logistic regression model.
 - Backward stepwise elimination.
 - The potential associations (P value $\leq .1$).
- **Results**: predictors of mortality:

Final Model From Multivariate Analysis

Variable	Odds Ratio (95% CI)	P Value
Older age (>79 years)	1.436 (1.099-1.877)	.008
Underlying chronic lung disease	1.671 (1.101-2.536)	.016
Skin and soft-tissue infection with MRSA	0.474 (0.296-0.759)	.002
Prior hospitalization	2.019 (1.244-3.279)	<.001
Long-term dialysis 🥠	0.415 (0.263-0.654)	<.001

- Odd ratio < 1: associated with lower risk.

- No collinearity was identified in predictors, and there was no significant interaction term found.

Disease Burden, Characteristics, and Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infection in	20 Rep sagepub.com/jc DOI: 10.11 journals.s
Hong Kong (You et al, 2017)	
Joyce H. S. You, DPharm, BCPS-AQ ID ¹ , Kin-wing Choi, MBChB, FRCP (Edin) ² , Tin-yau Wong, MBBS, MPH ² , Margaret Ip, BM, MSc ³ , Wai-kit Ming, MD, MPH ¹ Rity Yee-kwan Wong, BSN, MN ⁴ , Sze-ngai Chan, Hoi-tung Tse, MBBS ¹ , Carrie T. S. Chau, BSc, MI and Nelson L. S. Lee, MBBS(HK), MD(CUHK) ⁴	, MBBS', Phil ¹ ,

Example 3: Statistical models

Key predictors and burden of meticillin-resistant Staphylococcus aureus infection in comparison with meticillin-susceptible S. aureus infection in an Australian hospital setting (Miyakis et al, 2022) S. Miyakis^{a, b,*}, S. Brentnall^c, M. Masso^d, G. Reynolds^{b,e}, M.K. Byrne^f,

Benefits of the study:

- Antimicrobial stewardship
- Infection control practices
- Public awareness

MRSA infection in Australia

- **Objective:** to compare patients with MRSA and MSSA mortality and determine significant predictors of inpatient mortality.
- **Data source:** a non-identifiable databank established by the Centre for Health Research Illawarra Shoalhaven Population.
- Method: Cox proportional hazards model (5,897 patients) the hazard ratio changed overtime.
- **Results**: predictors of survival probability of *S. aureus* infection (including MRSA and MSSA) the first 375 days after admission (P < 0.05):
 - MRSA (compared to MSSA) 🤳
 - Older age 🤳
 - Male sex 🤳
 - Higher comorbidity score 🤳
 - Admission to a surgical ward was associated with lower inpatient mortality *

Example 4: Machine learning models

Machine Learning with Alpha Toxin Phenotype to Predict Clinical Outcome in Patients with *Staphylococcus aureus* Bloodstream Infection (Beadell et al, 2023)

Brent Beadell ^{1,†}, Surya Nehra ^{2,†}, Elizabeth Gusenov ¹, Holly Huse ³ and Annie Wong-Beringer ^{1,4,*}

MRSA bloodstream infection

- Motivation: Enable precision infectious disease therapeutics.
 - Alpha toxin-mediated thrombocytopenia (host-immune response).
 - Bacteria virulence factor production (i.e. alpha toxin (Hla))
- **Objective:** Predict thrombocytopenia on day 4 (platelet count < 150 * 10⁹/L) and 30-day mortality.

- Data source: Patients' medical records and REDCap electronic data capture tools.
- Method:

Integrate into the clinical workflow:

Patient presented with sepsis – blood drawn for diagnostic workup (e.g. complete blood count and culture). Initiate workup for organism identification from positive blood culture. Report culture and sensitivity results to clinician. Current Practice > Set up molecular diagnostics test (e.g. Biofire FilmArray) and antibiotic susceptibility testing. Take image of growth phenotype on SBA plate after 18h incubation using smartphone. Machine Learning Implementation > Upload image and Day 1 platelet count to a cloud network for ML- based processing. Report probability for thrombocytopenia at Day 4. Report probability for mortality.	Day 1	Day 2	Day 3
Current Practice Plate on SBA to assess growth phenotype. PCR and AST Take image of growth phenotype on SBA plate after 18h incubation using smartphone. > Upload image and Day 1 platelet count to a cloud network for ML-based processing. > Report probability for thrombocytopenia at Day 4. > Report probability for mortality.	Patient presented with sepsis – blood drawn for diagnostic workup (e.g. complete blood count and culture).	 Initiate workup for organism identification from positive blood culture. ➢ Set up molecular diagnostics test (e.g. Biofire FilmArray) and antibiotic 	Report culture and sensitivity results to clinician.
Machine Learning Implementation Take image of growth phenotype on SBA plate after 18h incubation using smartphone. > Upload image and Day 1 platelet count to a cloud network for ML-based processing. > Report probability for thrombocytopenia at Day 4. > Report probability for mortality.	Current Practice	 Plate on SBA to assess growth phenotype. PCR and AST 	
	Machine Learning Implementation		 Take image of growth phenotype on SBA plate after 18h incubation using smartphone. > Upload image and Day 1 platelet count to a cloud network for ML-based processing. > Report probability for thrombocytopenia at Day 4. > Report probability for mortality.

Example 5: Machine learning models

Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics (Cheng et al, 2022)

Chi-Yung Cheng^{1,2}, Chia-Te Kung², Fu-Cheng Chen², I-Min Chiu^{1,2}, Chun-Hung Richard Lin¹, Chun-Chieh Chu², Chien Feng Kung^{3*} and Chih-Min Su^{2*}

Motivation: build the early warning system model (ESM).

Objective: to predict the in-hospital death within 6 to 48 hours of admission.

Data source: electronic database records of Chang Gung Medical Center.

Method:

Features:

- Five vital signs: heart rate, respiratory rate, systolic blood pressure, diastolic blood pressure, and body temperature.
- Age and sex.

Validation: 5-fold cross-validation and an extra validation with reserved data.

Current challenges

- More attention should be given to the calibration (i.e. the reliability of risk predictions).
 - The current focus is primarily on the discrimination performance with traditional index (e.g. accuracy and precision)
- Integration of AI into clinical settings:
 - Identify which algorithms have the best performance for different types of prediction problems.
 - Who will be responsible for AI (i.e. algorithm bias/ errors)?

Thank you for your attention!